电脑软硬件应用网
当前位置: 电脑软硬件应用网 > 设计学院 > 网络编程 > C语言 > 正文
C语言初学者入门讲座 第十二讲 结构
C语言初学者入门讲座 第十二讲 结构
2007-3-19 12:22:49  文/佚名   出处:电脑软硬件应用网   
  在数组一章中,曾介绍过数组的长度是预先定义好的, 在整个程序中固定不变。C语言中不允许动态数组类型。例如: int n;scanf("%d",&n);int a[n]; 用变量表示长度,想对数组的大小作动态说明, 这是错误的。但是在实际的编程中,往往会发生这种情况, 即所需的内存空间取决于实际输入的数据,而无法预先确定。对于这种问题, 用数组的办法很难解决。为了解决上述问题,C语言提供了一些内存管理函数,这些内存管理函数可以按需要动态地分配内存空间, 也可把不再使用的空间回收待用,为有效地利用内存资源提供了手段。 常用的内存管理函数有以下三个:

  1.分配内存空间函数malloc

  调用形式: (类型说明符*) malloc (size) 功能:在内存的动态存储区中分配一块长度为"size" 字节的连续区域。函数的返回值为该区域的首地址。 “类型说明符”表示把该区域用于何种数据类型。(类型说明符*)表示把返回值强制转换为该类型指针。“size”是一个无符号数。例如: pc=(char *) malloc (100); 表示分配100个字节的内存空间,并强制转换为字符数组类型, 函数的返回值为指向该字符数组的指针, 把该指针赋予指针变量pc。

  2.分配内存空间函数 calloc

  calloc 也用于分配内存空间。调用形式: (类型说明符*)calloc(n,size) 功能:在内存动态存储区中分配n块长度为“size”字节的连续区域。函数的返回值为该区域的首地址。(类型说明符*)用于强制类型转换。calloc函数与malloc 函数的区别仅在于一次可以分配n块区域。例如: ps=(struet stu*) calloc(2,sizeof (struct stu)); 其中的sizeof(struct stu)是求stu的结构长度。因此该语句的意思是:按stu的长度分配2块连续区域,强制转换为stu类型,并把其首地址赋予指针变量ps。

  3.释放内存空间函数free

  调用形式: free(void*ptr); 功能:释放ptr所指向的一块内存空间,ptr 是一个任意类型的指针变量,它指向被释放区域的首地址。被释放区应是由malloc或calloc函数所分配的区域:[例7.9]分配一块区域,输入一个学生数据。

main()
{
 struct stu
 {
  int num;
  char *name;
  char sex;
  float score;
 } *ps;
 ps=(struct stu*)malloc(sizeof(struct stu));
 ps->num=102;
 ps->name="Zhang ping";
 ps->sex='M';
 ps->score=62.5;
 printf("Number=%d\nName=%s\n",ps->num,ps->name);
 printf("Sex=%c\nScore=%f\n",ps->sex,ps->score);
 free(ps);
}

  本例中,定义了结构stu,定义了stu类型指针变量ps。 然后分配一块stu大内存区,并把首地址赋予ps,使ps指向该区域。再以ps为指向结构的指针变量对各成员赋值,并用printf 输出各成员值。最后用free函数释放ps指向的内存空间。 整个程序包含了申请内存空间、使用内存空间、释放内存空间三个步骤, 实现存储空间的动态分配。链表的概念在例7.9中采用了动态分配的办法为一个结构分配内存空间。每一次分配一块空间可用来存放一个学生的数据, 我们可称之为一个结点。有多少个学生就应该申请分配多少块内存空间, 也就是说要建立多少个结点。当然用结构数组也可以完成上述工作, 但如果预先不能准确把握学生人数,也就无法确定数组大小。 而且当学生留级、退学之后也不能把该元素占用的空间从数组中释放出来。 用动态存储的方法可以很好地解决这些问题。 有一个学生就分配一个结点,无须预先确定学生的准确人数,某学生退学, 可删去该结点,并释放该结点占用的存储空间。从而节约了宝贵的内存资源。 另一方面,用数组的方法必须占用一块连续的内存区域。 而使用动态分配时,每个结点之间可以是不连续的(结点内是连续的)。 结点之间的联系可以用指针实现。 即在结点结构中定义一个成员项用来存放下一结点的首地址,这个用于存放地址的成员,常把它称为指针域。可在第一个结点的指针域内存入第二个结点的首地址, 在第二个结点的指针域内又存放第三个结点的首地址, 如此串连下去直到最后一个结点。最后一个结点因无后续结点连接,其指针域可赋为0。这样一种连接方式,在数据结构中称为“链表”。

  在链表中,第0个结点称为头结点, 它存放有第一个结点的首地址,它没有数据,只是一个指针变量。 以下的每个结点都分为两个域,一个是数据域,存放各种实际的数据,如学号num,姓名name,性别sex和成绩score等。另一个域为指针域, 存放下一结点的首地址。链表中的每一个结点都是同一种结构类型。例如, 一个存放学生学号和成绩的结点应为以下结构:

struct stu
{
 int num;
 int score;
 struct stu *next;
}

  前两个成员项组成数据域,后一个成员项next构成指针域, 它是一个指向stu类型结构的指针变量。链表的基本操作对链表的主要操作有以下几种:

  1.建立链表;

  2.结构的查找与输出;

  3.插入一个结点;

  4.删除一个结点;

  下面通过例题来说明这些操作。

  [例7.10]建立一个三个结点的链表,存放学生数据。 为简单起见, 我们假定学生数据结构中只有学号和年龄两项。

  可编写一个建立链表的函数creat。程序如下:

#define NULL 0
#define TYPE struct stu
#define LEN sizeof (struct stu)
struct stu
{
 int num;
 int age;
 struct stu *next;
};
TYPE *creat(int n)
{
 struct stu *head,*pf,*pb;
 int i;
 for(i=0;i<n;i++)
 {
  pb=(TYPE*) malloc(LEN);
  printf("input Number and Age\n");
  scanf("%d%d",&pb->num,&pb->age);
  if(i==0)
   pf=head=pb;
  else pf->next=pb;
  pb->next=NULL;
  pf=pb;
 }
 return(head);
}

  在函数外首先用宏定义对三个符号常量作了定义。这里用TYPE表示struct stu,用LEN表示sizeof(struct stu)主要的目的是为了在以下程序内减少书写并使阅读更加方便。结构stu定义为外部类型,程序中的各个函数均可使用该定义。

  creat函数用于建立一个有n个结点的链表,它是一个指针函数,它返回的指针指向stu结构。在creat函数内定义了三个stu结构的指针变量。head为头指针,pf 为指向两相邻结点的前一结点的指针变量。pb为后一结点的指针变量。在for语句内,用malloc函数建立长度与stu长度相等的空间作为一结点,首地址赋予pb。然后输入结点数据。如果当前结点为第一结点(i==0),则把pb值 (该结点指针)赋予head和pf。如非第一结点,则把pb值赋予pf 所指结点的指针域成员next。而pb所指结点为当前的最后结点,其指针域赋NULL。 再把pb值赋予pf以作下一次循环准备。

  creat函数的形参n,表示所建链表的结点数,作为for语句的循环次数。图7.4表示了creat函数的执行过程。

  [例7.11]写一个函数,在链表中按学号查找该结点。

TYPE * search (TYPE *head,int n)
{
 TYPE *p;
 int i;
 p=head;
 while (p->num!=n && p->next!=NULL)
  p=p->next; /* 不是要找的结点后移一步*/
  if (p->num==n) return (p);
  if (p->num!=n&& p->next==NULL)
  printf ("Node %d has not been found!\n",n
}

  本函数中使用的符号常量TYPE与例7.10的宏定义相同,等于struct stu。函数有两个形参,head是指向链表的指针变量,n为要查找的学号。进入while语句,逐个检查结点的num成员是否等于n,如果不等于n且指针域不等于NULL(不是最后结点)则后移一个结点,继续循环。如找到该结点则返回结点指针。 如循环结束仍未找到该结点则输出“未找到”的提示信息。

  [例7.12]写一个函数,删除链表中的指定结点。删除一个结点有两种情况:

  1. 被删除结点是第一个结点。这种情况只需使head指向第二个结点即可。即head=pb->next。其过程如图7.5所示。

  2. 被删结点不是第一个结点,这种情况使被删结点的前一结点指向被删结点的后一结点即可。即pf->next=pb->next。

  函数编程如下:

TYPE * delete(TYPE * head,int num)
{
 TYPE *pf,*pb;
 if(head==NULL) /*如为空表, 输出提示信息*/
 {
  printf("\nempty list!\n");
  goto end;
 }
 pb=head;
 while (pb->num!=num && pb->next!=NULL)
  /*当不是要删除的结点,而且也不是最后一个结点时,继续循环*/
 {
  pf=pb;pb=pb->next;}/*pf指向当前结点,pb指向下一结点*/
  if(pb->num==num)
  {
   if(pb==head) head=pb->next;
    /*如找到被删结点,且为第一结点,则使head指向第二个结点,
     否则使pf所指结点的指针指向下一结点*/
   else pf->next=pb->next;
   free(pb);
   printf("The node is deleted\n");}
  else
   printf("The node not been foud!\n");
   end:
  return head;
 }  

  函数有两个形参,head为指向链表第一结点的指针变量,num删结点的学号。 首先判断链表是否为空,为空则不可能有被删结点。若不为空,则使pb指针指向链表的第一个结点。进入while语句后逐个查找被删结点。找到被删结点之后再看是否为第一结点,若是则使head指向第二结点(即把第一结点从链中删去),否则使被删结点的前一结点(pf所指)指向被删结点的后一结点(被删结点的指针域所指)。如若循环结束未找到要删的结点, 则输出“末找到”的提示信息。最后返回head值。

  [例7.13]写一个函数,在链表中指定位置插入一个结点。在一个链表的指定位置插入结点, 要求链表本身必须是已按某种规律排好序的。例如,在学生数据链表中, 要求学号顺序插入一个结点。设被插结点的指针为pi。 可在三种不同情况下插入。

  1. 原表是空表,只需使head指向被插结点即可。

  2. 被插结点值最小,应插入第一结点之前。这种情况下使head指向被插结点,被插结点的指针域指向原来的第一结点则可。即:

pi->next=pb;
head=pi;

  3. 在其它位置插入。这种情况下,使插入位置的前一结点的指针域指向被插结点,使被插结点的指针域指向插入位置的后一结点。即为:pi->next=pb;pf->next=pi;

  4. 在表末插入。这种情况下使原表末结点指针域指向被插结点,被插结点指针域置为NULL。即:

pb->next=pi;
pi->next=NULL; TYPE * insert(TYPE * head,TYPE *pi)
{
 TYPE *pf,*pb;
 pb=head;
 if(head==NULL) /*空表插入*/
  (head=pi;
  pi->next=NULL;}
 else
 {
  while((pi->num>pb->num)&&(pb->next!=NULL))
  {
   pf=pb;
   pb=pb->next;
  }/*找插入位置*/
  if(pi->num<=pb->num)
  {
   if(head==pb)head=pi;/*在第一结点之前插入*/
   else pf->next=pi;/*在其它位置插入*/
   pi->next=pb; }
  else
  {
   pb->next=pi;
   pi->next=NULL;
  } /*在表末插入*/
 }
 return head;
}


  本函数有两个形参均为指针变量,head指向链表,pi 指向被插结点。函数中首先判断链表是否为空,为空则使head指向被插结点。表若不空,则用while语句循环查找插入位置。找到之后再判断是否在第一结点之前插入,若是则使head 指向被插结点被插结点指针域指向原第一结点,否则在其它位置插入, 若插入的结点大于表中所有结点,则在表末插入。本函数返回一个指针, 是链表的头指针。 当插入的位置在第一个结点之前时, 插入的新结点成为链表的第一个结点,因此head的值也有了改变, 故需要把这个指针返回主调函数。

  [例7.14]将以上建立链表,删除结点,插入结点的函数组织在一起,再建一个输出全部结点的函数,然后用main函数调用它们。

#define NULL 0
#define TYPE struct stu
#define LEN sizeof(struct stu)
struct stu
{
 int num;
 int age;
 struct stu *next;
};
TYPE * creat(int n)
{
 struct stu *head,*pf,*pb;
 int i;
 for(i=0;i<n;i++)
 {
  pb=(TYPE *)malloc(LEN);
  printf("input Number and Age\n");
  scanf("%d%d",&pb->num,&pb->age);
  if(i==0)
   pf=head=pb;
  else pf->next=pb;
  pb->next=NULL;
  pf=pb;
 }
 return(head);
}
TYPE * delete(TYPE * head,int num)
{
 TYPE *pf,*pb;
 if(head==NULL)
 {
  printf("\nempty list!\n");
  goto end;
 }
 pb=head;
 while (pb->num!=num && pb->next!=NULL)
 {
  pf=pb;pb=pb->next;
 }
 if(pb->num==num)
 {
  if(pb==head) head=pb->next;
  else pf->next=pb->next;
  printf("The node is deleted\n");
 }
 else
  free(pb);
  printf("The node not been found!\n");
 end:
 return head;
}
TYPE * insert(TYPE * head,TYPE * pi)
{
 TYPE *pb ,*pf;
 pb=head;
 if(head==NULL)
 {
  head=pi;
  pi->next=NULL;
 }
 else
 {
  while((pi->num>pb->num)&&(pb->next!=NULL))
  {
   pf=pb;
   pb=pb->next;
  }
  if(pi->num<=pb->num)
  {
   if(head==pb) head=pi;
   else pf->next=pi;
   pi->next=pb;
  }
  else
  {
   pb->next=pi;
   pi->next=NULL;
  }
 }
 return head;
}
void print(TYPE * head)
{
 printf("Number\t\tAge\n");
 while(head!=NULL)
 {
  printf("%d\t\t%d\n",head->num,head->age);
  head=head->next;
 }
}
main()
{
 TYPE * head,*pnum;
 int n,num;
 printf("input number of node: ");
 scanf("%d",&n);
 head=creat(n);
 print(head);
 printf("Input the deleted number: ");
 scanf("%d",&num);
 head=delete(head,num);
 print(head);
 printf("Input the inserted number and age: ");
 pnum=(TYPE *)malloc(LEN);
 scanf("%d%d",&pnum->num,&pnum->age);
 head=insert(head,pnum);
 print(head);
}

  本例中,print函数用于输出链表中各个结点数据域值。函数的形参head的初值指向链表第一个结点。在while语句中,输出结点值后,head值被改变,指向下一结点。若保留头指针head, 则应另设一个指针变量,把head值赋予它,再用它来替代head。在main函数中,n为建立结点的数目, num为待删结点的数据域值;head为指向链表的头指针,pnum为指向待插结点的指针。 main函数中各行的意义是:

  第六行输入所建链表的结点数;

  第七行调creat函数建立链表并把头指针返回给head;

  第八行调print函数输出链表;

  第十行输入待删结点的学号;

  第十一行调delete函数删除一个结点;

  第十二行调print函数输出链表;

  第十四行调malloc函数分配一个结点的内存空间, 并把其地址赋予pnum;

  第十五行输入待插入结点的数据域值;

  第十六行调insert函数插入pnum所指的结点;

  第十七行再次调print函数输出链表。

  从运行结果看,首先建立起3个结点的链表,并输出其值;再删103号结点,只剩下105,108号结点;又输入106号结点数据, 插入后链表中的结点为105,106,108。联合“联合”也是一种构造类型的数据结构。 在一个“联合”内可以定义多种不同的数据类型, 一个被说明为该“联合”类型的变量中,允许装入该“联合”所定义的任何一种数据。 这在前面的各种数据类型中都是办不到的。例如, 定义为整型的变量只能装入整型数据,定义为实型的变量只能赋予实型数据。

上一页  [1] [2] 

  • 上一篇文章:

  • 下一篇文章:
  • 最新热点 最新推荐 相关文章
    C语言初学者入门讲座 第十五讲 预处…
    C语言初学者入门讲座 第十四讲 枚举…
    C语言初学者入门讲座 第十三讲 联合
    C语言初学者入门讲座 第十二讲 多维…
    C语言初学者入门讲座 第十一讲 指针…
    C语言初学者入门讲座 第十讲 函数
    C语言初学者入门讲座 第九讲 数组
    C语言初学者入门讲座 第八讲 转移语…
    C语言初学者入门讲座 第七讲 循环结…
    C语言初学者入门讲座 第六讲 分支结…
    关于45IT | About 45IT | 联系方式 | 版权声明 | 网站导航 |

    Copyright © 2003-2011 45IT. All Rights Reserved 浙ICP备09049068号